If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-22x-60=0
a = 7; b = -22; c = -60;
Δ = b2-4ac
Δ = -222-4·7·(-60)
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{541}}{2*7}=\frac{22-2\sqrt{541}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{541}}{2*7}=\frac{22+2\sqrt{541}}{14} $
| v-15=-27 | | 4q+6=6 | | 9x-20-6x=16 | | 5x-3(4+3x)=-52 | | c+4/3=1=-7 | | -48=-4(4+2n | | 5x÷7=60 | | 54=54=36-9b | | 4(n-15)-8=-14 | | -1=2-n+n | | 9x+9=14x | | 10=3w−7w+6 | | -8+k=-3k | | -25(z+2)=0 | | 2x − 2 = 4x + 6 | | 45=16(18−12k)+4 | | 4(x+3)-4=15-6x-7+10x | | 7-4x=x+32 | | -23x+46=-138 | | (1+4m)=45 | | -8(v-2)=-2(-3v+6) | | 8a+6=8a | | -42+3x=609x | | c=4/3+1=-7 | | -3(-4x+10)=9(-2x-10) | | 10=2−v | | 12+0.1x=10+0.12x | | (1+4m=45 | | -3=14y+11 | | 12/14=x/21 | | 9(m−2)=m+40m= | | -2(-2x+4)=20 |